Disorder-assisted assembly of strongly correlated luminous fluids

  • Laflamme, R., Miquel, C., Paz, JP & Zurek, WH Perfect quantum error-correcting code. Phys. Rev. Lett. 77198-201 (1996).

    Article
    CASE

    Google Scholar

  • Devitt, SJ, Munro, WJ & Nemoto, K. Quantum error correction for beginners. Rep. Prog. Phys. 76076001 (2013).

    Article

    Google Scholar

  • Carusotto, I. et al. Photonic materials in circuit quantum electrodynamics. Nat. Phys. 16268-279 (2020).

    Article
    CASE

    Google Scholar

  • Pezze, L., Smerzi, A., Oberthaler, MK, Schmied, R. & Treutlein, P. Quantum metrology with nonclassical states of atomic ensembles. Rev. Mod. Phys. 90035005 (2018).

    Article
    MathSciNet
    CASE

    Google Scholar

  • Grusdt, F., Letscher, F., Hafezi, M. & Fleischhauer, M. Topological growth of Laughlin states in synthetic gauge fields. Phys. Rev. Lett. 113155301 (2014).

    Article

    Google Scholar

  • Dallaire-Demers, P.-L., Romero, J., Veis, L., Sim, S. & Aspuru-Guzik, A. Ansatz of shallow-depth circuitry to prepare correlated fermionic states on a quantum computer. Quantum science. Technology. 4045005 (2019).

    Article

    Google Scholar

  • Kapit, E., Hafezi, M. & Simon, SH Induced self-stabilization in fractional quantum Hall states of light. Phys. Rev. X 4031039 (2014).

    Google Scholar

  • Lebreuilly, J. et al. Stabilization of photonic fluids strongly correlated with non-Markovian reservoirs. Phys. Rev. HAS 96033828 (2017).

    Article

    Google Scholar

  • Albash, T. & Lidar, DA Adiabatic Quantum Computation. Rev. Mod. Phys. 90015002 (2018).

    Article
    MathSciNet

    Google Scholar

  • Zurek, WH, Dorner, U. & Zoller, P. Dynamics of a quantum phase transition. Phys. Rev. Lett. 95105701 (2005).

    Article

    Google Scholar

  • Ma, R. et al. A Mott insulator of photons stabilized by dissipation. Nature 56651–57 (2019).

    Article
    CASE

    Google Scholar

  • Tonks, L. The Complete Gas Equation of One, Two, and Three Dimensions of Hard Elastic Spheres. Phys. Round. 50955–963 (1936).

    Article
    CASE
    MATH

    Google Scholar

  • Girardeau, M. Relationship between impenetrable one-dimensional boson and fermion systems. J.Math. Phys. 1516-523 (1960).

    Article
    MathSciNet
    MATH

    Google Scholar

  • Goldman, N., Budich, JC & Zoller, P. Topological quantum matter with ultracold gases in optical lattices. Nat. Phys. 12639–645 (2016).

    Article
    CASE

    Google Scholar

  • Ozawa, T. et al. Topological photonics. Rev. Mod. Phys. 91015006 (2019).

    Article
    MathSciNet
    CASE

    Google Scholar

  • Blatt, R. & Roos, CF Quantum simulations with trapped ions. Nat. Phys. 8277-284 (2012).

    Article
    CASE

    Google Scholar

  • Bloch, I., Dalibard, J. & Nascimbene, S. Quantum simulations with ultracold quantum gases. Nat. Phys. 8267-276 (2012).

    Article
    CASE

    Google Scholar

  • Clark, LW, Schine, N., Baum, C., Jia, N. & Simon, J. Observing Laughlin states made of light. Nature 58241–45 (2020).

    Article
    CASE

    Google Scholar

  • Chen, Q., Stajic, J., Tan, S. & Levin, K. Crossover BCS-BEC: from high temperature superconductors to ultracold superfluids. Phys. representing 4121–88 (2005).

    Article
    CASE

    Google Scholar

  • Greiner, M., Mandel, O., Esslinger, T., Hänsch, TW & Bloch, I. Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 41539–44 (2002).

    Article
    CASE

    Google Scholar

  • Cooper, N., Dalibard, J. & Spielman, I. Topological bands for ultracold atoms. Rev. mod. Phys. 91015005 (2019).

    Article
    MathSciNet
    CASE

    Google Scholar

  • Bakr, WS, Gillen, JI, Peng, A., Fölling, S. & Greiner, M. A quantum gas microscope for detecting single atoms in a Hubbard regime optical lattice. Nature 46274–77 (2009).

    Article
    CASE

    Google Scholar

  • Trotzky, S. et al. Time-resolved observation and control of superexchange interactions with ultracold atoms in optical lattices. Science 319295-299 (2008).

    Article
    CASE

    Google Scholar

  • Islam, R. et al. Measurement of entanglement entropy in a quantum many-body system. Nature 52877–83 (2015).

    Article
    CASE

    Google Scholar

  • Karamlou, AH et al. Quantum transport and localization in 1d and 2d tight-binding networks. npj Quantum Inform. 835 (2022).

    Article

    Google Scholar

  • Zhang, J. et al. Observation of a discrete-time crystal. Nature 543217-220 (2017).

    Article
    CASE

    Google Scholar

  • Choi, S. et al. Observing discrete temporal crystal order in a disordered dipole many-body system. Nature 543221-225 (2017).

    Article
    CASE

    Google Scholar

  • Choi, J.-Y. et al. Exploration of multi-body localization transition in two dimensions. Science 3521547-1552 (2016).

    Article
    MathSciNet
    CASE
    MATH

    Google Scholar

  • Roushan, P. et al. Spectroscopic localization signatures with interacting photons in superconducting qubits. Science 3581175-1179 (2017).

    Article
    MathSciNet
    CASE

    Google Scholar

  • Bluvstein, D. et al. Control of quantum many-body dynamics in lattices of trained Rydberg atoms. Science 3711355–1359 (2021).

    Article
    MathSciNet
    CASE
    MATH

    Google Scholar

  • Brown, PT et al. Poor metal transport in a cold atom Fermi-Hubbard system. Science 363379–382 (2019).

    Article
    CASE

    Google Scholar

  • McIver, JW et al. Anomalous light-induced Hall effect in graphene. Nat. Phys. 1638–41 (2020).

    Article
    CASE

    Google Scholar

  • Choi, S., Bao, Y., Qi, X.-L. & Altman, E. Quantum error correction in interference dynamics and measurement-induced phase transition. Phys. Rev. Lett. 125030505 (2020).

    Article
    MathSciNet
    CASE

    Google Scholar

  • Eisert, J., Friesdorf, M. & Gogolin, C. Non-equilibrium quantum many-body systems. Nat. Phys. 11124-130 (2015).

    Article
    CASE

    Google Scholar

  • Simon, J. et al. Quantum simulation of antiferromagnetic spin chains in an optical lattice. Nature 472307–312 (2011).

    Article
    CASE

    Google Scholar

  • Mazurenko, A. et al. A cold atom Fermi-Hubbard antiferromagnet. Nature 545462–466 (2017).

    Article
    CASE

    Google Scholar

  • Ma, R., Owens, C., Houck, A., Schuster, DI & Simon, J. Self-contained stabilizer for incompressible photonic fluids and solids. Phys. Rev. HAS 95043811 (2017).

    Article

    Google Scholar

  • Bak, P. Proportional Phases, Incommensurable Phases, and the Devil’s Staircase. Rep. Prog. Phys. 45587 (1982).

    Article
    MathSciNet

    Google Scholar

  • Umucalílar, R., Simon, J. & Carusotto, I. Autonomous stabilization of Laughlin photonic states by angular momentum potentials. Phys. Rev. HAS 104023704 (2021).

    Article
    MathSciNet

    Google Scholar

  • Gemelke, N., Zhang, X., Hung, C.-L. & Chin, C. In situ observation of incompressible Mott insulating domains in ultracold atomic gases. Nature 460995–998 (2009).

    Article
    CASE

    Google Scholar

  • Zhou, Y., Kanoda, K. & Ng, T.-K. Quantum spin liquid states. Rev. Mod. Phys. 89025003 (2017).

    Article
    MathSciNet

    Google Scholar

  • Kinoshita, T., Wenger, T. & Weiss, DS Observation of one-dimensional Tonks–Girardeau gas. Science 3051125–1128 (2004).

    Article
    CASE

    Google Scholar

  • Paredes, B. et al. Tonks–Girardeau ultracold atomic gases in an optical lattice. Nature 429277–281 (2004).

    Article
    CASE

    Google Scholar

  • Cazalilla, MA, Citro, R., Giamarchi, T., Orignac, E. & Rigol, M. One-dimensional bosons: from condensed matter systems to ultracold gases. Rev. Mod. Phys. 831405-1466 (2011).

    Article

    Google Scholar

  • Meyer, DA & Wallach, NR Global entanglement in multiparticle systems. J.Math. Phys. 434273 (2002).

    Article
    MathSciNet
    MATH

    Google Scholar

  • Chandran, A., Erez, A., Gubser, SS & Sondhi, SL The Kibble-Zurek problem: universality and the limit of scale. Phys. Rev. B 86064304 (2012).

    Article

    Google Scholar

  • Owens, JC et al. Quantum electrodynamics in chiral cavity. Nat. Phys. 181048-1052 (2022).

    Article
    CASE

    Google Scholar

  • Swingle, B., Bentsen, G., Schleier-Smith, M. & Hayden, P. Measuring quantum information scrambling. Phys. Rev. HAS 94040302 (2016).

    Article
    MathSciNet

    Google Scholar

  • Grusdt, F., Yao, NY, Abanin, D., Fleischhauer, M. & Demler, E. Interferometric measurements of many-body topological invariants using mobile impurities. Nat. Common. seven11994 (2016).

    Article
    CASE

    Google Scholar

  • Koch, J. et al. Charge-insensitive qubit design derived from the Cooper pair box. Phys. Rev. HAS 76042319 (2007).

  • Leave a Comment