Summary: Researchers have identified a protein that could be harnessed to help microglia in the brain ward off Alzheimer’s disease and other neurodegenerative diseases.
Source: The conversation
Many neurodegenerative diseases, or conditions that result from the loss of function or death of brain cells, remain largely incurable. Most available treatments target only one of many processes this can lead to neurodegeneration, which may not be effective in completely treating symptoms or disease progression, if at all.
But what if researchers harnessed the brain’s inherent abilities to cleanse and heal itself? My colleagues and me in the Lukens Laboratory at the University of Virginia believe that the brain’s own immune system may hold the key to treating neurodegenerative diseases. In our to researchwe have found a protein that could potentially be harnessed to help brain immune cells, or microglia, ward off Alzheimer’s disease.
The Challenges of Treating Neurodegeneration
No treatment available for neurodegenerative diseases stops ongoing neurodegeneration while helping affected areas of the body to heal and recover.
In terms of treatment failures, Alzheimer’s disease is perhaps the most infamous of the neurodegenerative diseases. Affecting more than 1 in 9 American adults age 65 and older, Alzheimer’s disease results from cerebral atrophy with the death of neurons and the loss of connections between them. These losses contribute to memory and cognitive decline. billions of dollars have been funneled into finding treatments for Alzheimer’s disease, but nearly every drug tested to date has failed in clinical trials.
Another common neurodegenerative disease requiring improved treatment options is multiple sclerosis. This autoimmune disease is caused by immune cells that attack the protective covering of neurons, known as myelin. The breakdown of myelin leads to difficulties in communication between neurons and their connections with the rest of the body.
Current treatments suppress the immune system and can have potentially debilitating side effects. Many of these treatment options fail to address the toxic effects of myelin debris that builds up in the nervous system, which can kill cells.
A new frontier in the treatment of neurodegeneration
The microglia are immune cells pretending to be brain cells. In mice, microglia originate in the yolk sac of an embryo and then infiltrate the brain during early development. The origins and migration of microglia at people’s Place are still under study.
Microglia play an important role in the proper functioning of the brain. Like other immune cells, microglia respond quickly to pathogens and damage. They help eliminate injuries and repair affected tissues, and can also play an active role in fighting pathogens. Microglia can also regulate brain inflammation, a normal part of the immune response that can cause swelling and damage if left unchecked.
Microglia also support the health of other brain cells. For example, they can release molecules that promote resiliencesuch as the BDNF protein, known to be beneficial for the survival and functioning of neurons.
But the keystone of microglia is its amazing concierge skills. Of all types of brain cells, microglia have an exquisite ability to clean up grime in the brain, including damaged myelin in multiple sclerosis, bits of dead cells, and beta-amyloid, a toxic protein characteristic of Alzheimer’s disease. They accomplish this by consuming and breaking down debris in their environment, effectively eating the garbage around them and their neighboring cells.
Given the many critical roles microglia play in maintaining brain function, these cells may possess the ability to address multiple arms of neurodegeneration-related dysfunction. Additionally, as permanent residents of the brain, microglia are already trained in brain protection best practices. These factors put microglia in the perfect position for researchers to leverage their inherent abilities to protect against neurodegeneration.
New data in animal models and human patients indicates a previously underestimated role that microglia also play in the development of neurodegenerative diseases. Many genetic risk factors for diseases like Alzheimer’s and multiple sclerosis are strongly linked to abnormal function of microglia. These findings support a growing number of animal studies suggesting that disturbances in microglial function may contribute to the onset and severity of neurological disease.
This raises the following logical question: how can researchers harness microglia to protect the nervous system against neurodegeneration?
Engage the magic of microglia
In our laboratory recent studywe captured a crucial protein called SYK that microglia use to manipulate its response to neurodegeneration.
Our collaborators discovered that microglia compose SYK activity when they encounter debris in their environment, such as beta-amyloid in Alzheimer’s disease or myelin debris in multiple sclerosis. When we inhibited SYK function in microglia, we found that twice as much beta-amyloid accumulated in mouse models with Alzheimer’s disease and six times as much myelin debris in mouse models with Alzheimer’s disease. multiple sclerosis.
Blocking SYK function in the microglia of Alzheimer’s mouse models also worsened neuronal health, indicated by increasing levels of toxic neuronal proteins and an increase in the number of dying neurons. This correlated with accelerated cognitive decline, as the mice failed to learn a spatial memory test.
Similarly, alteration of SYK in mouse models with multiple sclerosis exacerbated motor dysfunction and impeded myelin repair. These results indicate that microglia use SYK to protect the brain from neurodegeneration.
But how does SYK protect the nervous system against damage and degeneration? We found that microglia use SYK to migrate to debris in the brain. It also helps microglia clear and destroy this debris by stimulating other proteins involved in cleaning processes. These jobs support the idea that SYK helps microglia protect the brain by instructing them to remove toxic materials.
Finally, we wanted to know if we could leverage SYK to create a “super microglia” that could help clean up debris before it worsens neurodegeneration. When we gave mice a drug that boosted SYK function, we found that the Alzheimer’s mouse models had lower levels of plaque buildup in their brains one week after receiving the drug. This finding indicates the potential for increased microglia activity to treat Alzheimer’s disease.

The horizon of treatments for microglia
Future studies will be needed to see if creating a super microglia cleanup team to treat neurodegenerative diseases is beneficial in humans. But our results suggest that microglia already play a key role in preventing neurodegenerative diseases by helping to remove toxic waste from the nervous system and promoting healing of damaged areas.
It’s possible to have too much of a good thing, however. Excessive inflammation caused by microglia could aggravate the neurological disease. We believe that equipping microglia with the proper instructions to perform its beneficial functions without causing further harm could one day help treat and prevent neurodegenerative diseases.
Funding: This work was supported by funding from the NIH (1RF1AG071996-01, R01NS106383), Alzheimer’s Association (ADSF-21-816651), Cure Alzheimer’s Fund, Owens Family Foundation, and a Wagner Fellowship.
About this immune system and neurodegeneration research news
Author: Kristine Zengeler
Source: The conversation
Contact: Kristine Zengeler – The Conversation
Image: Image is in public domain